Copied to
clipboard

G = C24.38D6order 192 = 26·3

27th non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.38D6, C6.32+ 1+4, C3⋊D48D4, Dic3⋊D41C2, D6⋊D42C2, C31(D45D4), C22⋊C440D6, D6.12(C2×D4), (C22×C4)⋊11D6, C127D417C2, C244S32C2, D6⋊C446C22, C23.9D61C2, (C2×D12)⋊2C22, (C2×C6).34C24, C4⋊Dic34C22, C6.37(C22×D4), C22.18(S3×D4), C2.7(D46D6), C225(C4○D12), Dic3.14(C2×D4), Dic34D440C2, (C2×C12).128C23, Dic3⋊C449C22, (C22×C12)⋊14C22, Dic3.D42C2, C23.11D61C2, (C4×Dic3)⋊47C22, (C2×Dic6)⋊48C22, C23.28D69C2, C6.D48C22, (C23×C6).60C22, C22.73(S3×C23), (S3×C23).31C22, (C22×C6).387C23, C23.231(C22×S3), (C22×S3).152C23, (C2×Dic3).180C23, (C22×Dic3).78C22, C2.11(C2×S3×D4), (C4×C3⋊D4)⋊1C2, (C2×C4○D12)⋊3C2, (C2×C6)⋊8(C4○D4), (S3×C2×C4)⋊40C22, C6.14(C2×C4○D4), (C6×C22⋊C4)⋊18C2, (C2×C22⋊C4)⋊13S3, (S3×C22⋊C4)⋊24C2, C2.16(C2×C4○D12), (C2×C6).383(C2×D4), (C22×C3⋊D4)⋊5C2, (C2×C3⋊D4)⋊1C22, (C3×C22⋊C4)⋊53C22, (C2×C4).259(C22×S3), SmallGroup(192,1049)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.38D6
C1C3C6C2×C6C22×S3S3×C23S3×C22⋊C4 — C24.38D6
C3C2×C6 — C24.38D6
C1C22C2×C22⋊C4

Generators and relations for C24.38D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=c, ab=ba, ac=ca, eae-1=faf-1=ad=da, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >

Subgroups: 952 in 334 conjugacy classes, 107 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C22×C6, C2×C22⋊C4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C4○D12, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C22×C12, S3×C23, C23×C6, D45D4, Dic3.D4, S3×C22⋊C4, Dic34D4, D6⋊D4, C23.9D6, Dic3⋊D4, C23.11D6, C4×C3⋊D4, C23.28D6, C127D4, C244S3, C6×C22⋊C4, C2×C4○D12, C22×C3⋊D4, C24.38D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, 2+ 1+4, C4○D12, S3×D4, S3×C23, D45D4, C2×C4○D12, C2×S3×D4, D46D6, C24.38D6

Smallest permutation representation of C24.38D6
On 48 points
Generators in S48
(1 7)(2 38)(3 9)(4 40)(5 11)(6 42)(8 44)(10 46)(12 48)(13 19)(14 34)(15 21)(16 36)(17 23)(18 26)(20 28)(22 30)(24 32)(25 31)(27 33)(29 35)(37 43)(39 45)(41 47)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)(33 37)(34 38)(35 39)(36 40)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 25)(24 26)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 24 19 18)(14 17 20 23)(15 22 21 16)(25 28 31 34)(26 33 32 27)(29 36 35 30)(37 42 43 48)(38 47 44 41)(39 40 45 46)

G:=sub<Sym(48)| (1,7)(2,38)(3,9)(4,40)(5,11)(6,42)(8,44)(10,46)(12,48)(13,19)(14,34)(15,21)(16,36)(17,23)(18,26)(20,28)(22,30)(24,32)(25,31)(27,33)(29,35)(37,43)(39,45)(41,47), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,37)(34,38)(35,39)(36,40), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,28,31,34)(26,33,32,27)(29,36,35,30)(37,42,43,48)(38,47,44,41)(39,40,45,46)>;

G:=Group( (1,7)(2,38)(3,9)(4,40)(5,11)(6,42)(8,44)(10,46)(12,48)(13,19)(14,34)(15,21)(16,36)(17,23)(18,26)(20,28)(22,30)(24,32)(25,31)(27,33)(29,35)(37,43)(39,45)(41,47), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,37)(34,38)(35,39)(36,40), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,28,31,34)(26,33,32,27)(29,36,35,30)(37,42,43,48)(38,47,44,41)(39,40,45,46) );

G=PermutationGroup([[(1,7),(2,38),(3,9),(4,40),(5,11),(6,42),(8,44),(10,46),(12,48),(13,19),(14,34),(15,21),(16,36),(17,23),(18,26),(20,28),(22,30),(24,32),(25,31),(27,33),(29,35),(37,43),(39,45),(41,47)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48),(33,37),(34,38),(35,39),(36,40)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,25),(24,26)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,24,19,18),(14,17,20,23),(15,22,21,16),(25,28,31,34),(26,33,32,27),(29,36,35,30),(37,42,43,48),(38,47,44,41),(39,40,45,46)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L 3 4A4B4C4D4E4F4G4H4I4J4K4L6A···6G6H6I6J6K12A···12H
order122222222222234444444444446···6666612···12
size111122224661212222224466121212122···244444···4

45 irreducible representations

dim1111111111111112222222444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6C4○D4C4○D122+ 1+4S3×D4D46D6
kernelC24.38D6Dic3.D4S3×C22⋊C4Dic34D4D6⋊D4C23.9D6Dic3⋊D4C23.11D6C4×C3⋊D4C23.28D6C127D4C244S3C6×C22⋊C4C2×C4○D12C22×C3⋊D4C2×C22⋊C4C3⋊D4C22⋊C4C22×C4C24C2×C6C22C6C22C2
# reps1111112111111111442148122

Matrix representation of C24.38D6 in GL4(𝔽13) generated by

12000
01200
0010
00512
,
2900
41100
00120
00012
,
12000
01200
0010
0001
,
1000
0100
00120
00012
,
0500
8500
00123
0001
,
5000
5800
00123
0001
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,1,5,0,0,0,12],[2,4,0,0,9,11,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[0,8,0,0,5,5,0,0,0,0,12,0,0,0,3,1],[5,5,0,0,0,8,0,0,0,0,12,0,0,0,3,1] >;

C24.38D6 in GAP, Magma, Sage, TeX

C_2^4._{38}D_6
% in TeX

G:=Group("C2^4.38D6");
// GroupNames label

G:=SmallGroup(192,1049);
// by ID

G=gap.SmallGroup(192,1049);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,100,675,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations

׿
×
𝔽